Section 6-1  Geometric Introduction to the Simplex Method
A fast-food chain plans to expand by opening several new restaurants. The chain operates two types of restaurants: drive-through and full-service. A drive-through restaurant costs $1,000,000 to construct and has an expected annual revenue of $2,000,000. A full-service restaurant costs $1,500,000 to construct and has an expected annual revenue of $5,000,000. The chain has $21,000,000 in capital available for constructing new restaurants and licensing restrictions require that they open no more than 20 new restaurants. How many of each type of restaurant should they open to maximize the expected annual revenue? What is the maximum expected annual revenue?
	Restaurant
	#

	Drive-Through
	x1


	Full-Service
	x2


	
	
	Drive-Through
Full-Service
Constraint

Count
x1

+

x2
≤ 20
Cost
x1
+

1.5x2
≤ 21
Revenue

2x1
+
5x2
Maximize




Here is the mathematical model:
x1 +    x2 ≤ 20

x1 + 1.5x2 ≤ 21

R = 2x1 + 5x2
x1, x2 ≥ 0
	Count


	x1
	x2

	0

	20


	20

	0



	
	
	Cost

x1
x2
0

14

21

0




The feasible region is illustrated below. The count constraint is shown in red and the cost constraint is shown in green. These lines intersect at (18, 2) corresponding to 18 drive-through restaurants and 2 full-service restaurants.
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The maximum annual revenue is $70,000,000 and will be realized if no drive-through restaurants are built and 14 full-service restaurants are built.
The graph of the maximum profit line has been added (in black). Notice that this line is as far from the origin as possible while still intersecting the feasible region.

Introducing two slack variables to change the system of inequalities to a system of equations gives us this alternate mathematical model (where the revenue equation has been rewritten to place all variables on the left of the equal sign and the constant term on the right):
  x1 +    x2 + s1          = 20

  x1 + 1.5x2      + s2     = 21
-2x1 +  -5x2           + R =  0

x1, x2, s1, s2 ≥ 0
A slack variable represents an unused resource. The slack variable s1 represents the number of restaurants we could have built (subject to the constraint) but didn’t. The variable s2 represents the amount of money we could have spent (subject to the constraint) but didn’t.

The variables are divided into two mutually exclusive groups: basic and non-basic with the restriction that there always as many basic variables as there are equations. In each case, the non-basic variables are set to zero and the corresponding values of the basic variables are then calculated. These values represent a basic solution. If all of the values in a basic solution are non-negative, it is a feasible solution. If an optimization problem has a solution at all, it will be at one (or possibly more) of these feasible solutions.

In this problem, each basic solution will have two basic variables because there are two equations. That means there will be two non-basic variables (whose values will be zero) in each solution. Here are the six basic solutions with the feasible solutions highlighted and the corresponding revenue values. Note that the maximum revenue was, indeed, at one of these basic feasible solutions.

	x1
	x2
	s1
	s2
	Feasible?
	Revenue (in Millions)

	0
	0
	20
	21
	Yes
	0

	0
	20
	0
	-9
	No
	

	0
	14
	6
	0
	Yes
	70

	20
	0
	0
	1
	Yes
	40

	21
	0
	-1
	0
	No
	

	18
	2
	0
	0
	Yes
	46


The basic solutions correspond to the points of intersection of pairs of constraint lines (including the constraints that x1 ≥ 0and x2 ≥ 0).These are shown on the graph above and listed in the table below. The basic feasible solutions are the basic solutions that correspond to the vertices of the feasible region. The vertices of the feasible region are highlighted in the table below.
	Point of Intersection
	Constraint 1
	Constraint 2

	(0,0)
	x1 ≥  0 (Vertical Axis)
	x2 ≥  0 (Horizontal Axis)

	(0,20)
	x1 ≥  0 (Vertical Axis)
	x1 + x2 ≤ 20 (Count Constraint)

	(0,14)
	x1 ≥  0 (Vertical Axis)
	x1 + 1.5x2 ≤ 21 (Cost Constraint)

	(20,0)
	x2 ≥  0 (Horizontal Axis)
	x1 + x2 ≤ 20 (Count Constraint)

	(21,0)
	x2 ≥  0 (Horizontal Axis)
	x1 + 1.5x2 ≤ 21 (Cost Constraint)

	(18,2)
	x1 + x2 ≤ 20 (Count Constraint)
	x1 + 1.5x2 ≤ 21 (Cost Constraint)


The Simplex algorithm proceeds from one basic feasible solution to another in such a way that each successive solution is closer to the optimal solution. The algorithm terminates when the optimal solution is found.
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